首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Ultrafast 2D NMR spectroscopy using a continuous spatial encoding of the spin interactions
Authors:Shrot Yoav  Shapira Boaz  Frydman Lucio
Institution:Department of Chemical Physics, Weizmann Institute of Science, 76100 Rehovot, Israel.
Abstract:A new protocol for acquiring multidimensional NMR spectra within a single scan is introduced and illustrated. The approach relies on applying a pair of frequency-chirped excitation and storage pulses in combination with echoing magnetic field gradients, in order to impart the kind of linear spatial encoding of the NMR interactions that is required by ultrafast 2D NMR spectroscopy. It is found that when dealing with 2D NMR experiments involving a t1 amplitude-modulation of the spin evolution, such continuous encoding scheme presents a number of advantages over alternatives employing discrete excitation pulses. From an experimental standpoint this is mainly reflected by the use of a single pair of bipolar gradients during the course of the indirect-domain encoding, as opposed to the numerous (and more intense) gradient echoes required so far. In terms of the spectral outcome, main advantages of the continuous spatial encoding scheme are the avoidance of "ghost peaks" and of "enveloping effects" associated to the discrete excitation mode. The principles underlying this new spatial encoding protocol are derived, and its applicability is demonstrated with homo- and heteronuclear 2D ultrafast NMR applications on small molecule and on protein samples.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号