首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Nuclear magnetic resonance studies of resorcinol-formaldehyde aerogels
Authors:Moudrakovski Igor L  Ratcliffe Christopher I  Ripmeester John A  Wang Li-Qiong  Exarhos Gregory J  Baumann Theodore F  Satcher Joe H
Institution:Steacie Institute for Molecular Sciences, National Research Council, Ottawa, Ontario, Canada K1A 0R6.
Abstract:In this article, we report a detailed study of resorcinol-formaldehyde (RF) aerogels prepared under different processing conditions, resorcinol]/catalyst] (R/C) ratios in the starting sol-gel solutions, using continuous flow hyperpolarized (129)Xe NMR in combination with solid-state (13)C and two-dimensional wide-line separation (2D-WISE) NMR techniques. The degree of polymerization and the mobility of the cross-linking functional groups in RF aerogels are examined and correlated with the R/C ratios. The origin of different adsorption regions is evaluated using both coadsorption of chloroform and 2D EXSY (129)Xe NMR. A hierarchical set of Xe exchange processes in RF aerogels is found using 2D EXSY (129)Xe NMR. The exchange of Xe gas follows the sequence (from fastest to slowest): mesopores with free gas, gas in meso- and micropores, free gas with micropores, and, finally, among micropore sites. The volume-to-surface-area (V(g)/S) ratios for aerogels are measured for the first time without the use of geometric models. The V(g)/S parameter, which is related both to the geometry and the interconnectivity of the pore space, has been found to correlate strongly with the R/C ratio and exhibits an unusually large span: an increase in the R/C ratio from 50 to 500 results in about a 5-fold rise in V(g)/S.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号