首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Photoinduced fluorescence enhancement in mono- and multilayer films of CdSe/ZnS quantum dots: dependence on intensity and wavelength of excitation light
Authors:Uematsu Takafumi  Maenosono Shinya  Yamaguchi Yukio
Institution:Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8656, Japan. taka@chemsys.t.u-tokyo.ac.jp
Abstract:Photoinduced fluorescence enhancement (PFE) behavior in mono- and multilayer films of CdSe/ZnS core/shell quantum dots (QDs) on glass substrates was investigated using various intensities and wavelengths of excitation light. CdSe/ZnS QDs capped with tri-n-octylphosphine oxide (TOPO) were produced using colloidal chemical synthesis, and mono- and multilayer QD films were fabricated on glass substrates by spin coating. The fluorescence quantum yield (QY) of the QD monolayer was greatly enhanced by continuous irradiation in a dry nitrogen atmosphere, whereas the QD multilayer showed a small enhancement of the QY or fluorescence intensity decay. In addition, the shorter the excitation wavelength, the more pronounced the PFE. The rate of increase of the QY increased with decreasing excitation intensities at any wavelength. These dependences were observed in both mono- and multilayer films. Our results suggest that the photoejection of electrons to the substrate is the origin of PFE. Assuming the charging effect of electrons trapped in the substrate, a phenomenological model is proposed to explain all of the experimental results, that is, the dependence on the intensity and wavelength of excitation light and the qualitative difference in PFE behavior between mono- and multilayer films.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号