首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Evaluation of different sample introduction approaches for the determination of boron in unalloyed steels by inductively coupled plasma mass spectrometry
Institution:CENIM (CSIC), Gregorio del Amo 8, 28040 Madrid, Spain
Abstract:An extended study of different sampling introduction approaches using inductively coupled plasma mass spectrometry (ICP-MS) is presented for the determination of boron in steel samples. The following systems for sample introduction were applied: direct sample solution nebulization by continuous nebulization (CN) using a cross-flow nebulizer and with flow injection (FI), applied to 0.1% (m/v) and 0.5% (m/v) sample solutions, respectively; FI after iron matrix extraction, using acetylacetone–chloroform, and isotopic dilution (ID) analysis as the calibration method; FI with on-line electrolytic matrix separation; and spark ablation (SA) and laser ablation (LA) as solid sampling techniques. External calibration with matrix-matching samples was used with CN, SA, and LA, and only acid solutions (without matrix matching) with FI methods. When FI was directly applied to a sample solution, the detection limit was of 0.15 μg g?1, improving by a factor of 4 that was obtained from the CN measurements. Isotopic dilution analysis, after matrix removal by solvent extraction, made it possible to analyse boron with a detection limit of 0.02 μg g?1 and, with the on-line electrolytic process, the detection limit was of 0.05 μg g?1. The precision for concentrations above 10 times the detection limit was better than 2% for CN, as well as for FI methods. Spark and laser ablation sampling systems, avoiding digestion and sample preparation procedures, provided detection limits at the μg g?1 levels, with RSD values better than 6% in both cases. Certified Reference Materials with B contents in the range 0.5–118 μg g?1 were used for validation, finding a good agreement between certified and calculated values.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号