首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Theoretical study of the surface energy and electronic structure of pyrite FeS2 (100) using a total-energy pseudopotential method, CASTEP
Authors:Qiu Guanzhou  Xiao Qi  Hu Yuehua  Qin Wenqing  Wang Dianzuo
Institution:School of Resource Processing and Bioengineering, Central South University, Changsha 410083, Hunan, People's Republic of China. qgz@mail.csu.edu.cn
Abstract:The geometric and electronic structures of FeS(2) (100) surface have been studied by a quantum-mechanical calculation using a total-energy pseudopotential code, CASTEP. The (100) surface is very stable and does not give any significant geometric relaxation. The electronic structure of FeS(2) (100) surface is characterized by the appearance of new native surface states in the bulk band gap, which correspond to antibonding mixed Fea-Ssp(3) states. These surface states play an important role as mediators of electron transfer on both anodic and cathodic sites in the incipient oxidation of pyrite. Moreover, the (100) surface has small band gaps and shows some metallic character. It is predicted that the rate of cathodic reductive reaction of O(2) in the incipient oxidation of pyrite is much faster than previously considered. The transport of electrons from the anodic sites to the cathodic sites on the (100) surface is faster and hole injection of anodic sites is not the rate-determining step. So we can deduce that the rate-determining step of incipient oxidation for pyrite consists of both electron transfer of pyrite/aqueous O(2) interface and the splitting of H(2)O.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号