Affiliation: | (1) Department of Chemistry, Indian Institute of Technology, Roorkee, 247 667, India;(2) Institute Instrumentation Centre, Indian Institute of Technology, Roorkee, 247 667, India |
Abstract: | Transition metal dithiocarbamate complexes, [M(S2CN(C2H5)(CH2CH2OH)] (M=Co, Ni, Cu, Zn and Cd) have been prepared and characterized by elemental analysis and infrared spectra. Thermal decomposition of all the complexes occurs in two or three stages. The first stage in all the complexes is always fast with 65-70% mass loss. In all cases the end product is metal oxide except in the case of cobalt complex which gives Co metal as an end product. During decomposition of copper complex, first CuS is formed at ~300°C which is converted into CuSO4 and finally CuO is formed. However, decomposition in helium atmosphere yields CuS. SEM studies of transition metal dithiocarbamates reveal needle shape crystalline phase at room temperature and formation of metal sulphide/oxide at higher temperatures. The activation energy varies in a large range of 33.8-188.3 kJ mol-1, being minimum for the Cu complex and maximum for the Zn complex possibly due to d 10 configuration. In the case of Ni, Zn and Cd complexes the order of reaction is two suggesting bimolecular process involving intermolecular rearrangement. However, in other cases it is a unimolecular process. Large negative values of ΔS # for all the complexes suggest that the decomposition process involves rearrangement. This revised version was published online in July 2006 with corrections to the Cover Date. |