首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Comparative study of acetic acid, methanol, and water adsorbed on anatase TiO2 probed by sum frequency generation spectroscopy
Authors:Wang Chuan-yi  Groenzin Henning  Shultz Mary Jane
Institution:Pearson Laboratory, Department of Chemistry, Tufts University, Medford, Massachusetts 02155, USA.
Abstract:Sum frequency generation (SFG) vibrational spectroscopy is used to investigate the surface adsorption of three probe molecules-acetic acid, methanol, and water--on a film composed of nanoscale anatase TiO(2) particles. On the TiO(2) surface, only one adsorption mode, chemisorption, is observed for acetic acid. This is evidenced by one sharp SFG peak in the C-H region, which is stable with time and robust both to evacuation and to the addition of water. A Langmuir constant of (9.21 +/- 0.71) x 10(3) is determined from the adsorption isotherm. In the case of methanol adsorption, however, there are two adsorption modes, molecular physisorption and dissociative chemisorption. The corresponding SFG signals are stable with time but diminished with addition of water. Changes in the SFG features for methanol and for the methoxy species with addition of water and subsequent evacuation provide the first experimental proof of reversible hydroxylation and dehydroxylation at the TiO(2) surface. For water adsorption, only one mode, physisorption, is observed on the hydroxylated TiO(2) surface. The water adlayer is mobile, as is evidenced by variation of the water H-bonded SFG signal with time. Competitive adsorption among the three molecular probes is clearly resolved by in situ SFG measurements. The adsorption strength follows the order acetic acid (strongest), methanol, water (weakest). The adsorption order as well as the difference in response of methanol versus acetic acid adsorption to addition of water has direct implications for understanding TiO(2) photocatalysis as well as the surface modifications involved in TiO(2) photoelectrochemical solar cells and processes in TiO(2) nanomaterial synthesis and assembly.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号