首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Ligand substitution of FeRu2(CO)12 and Fe2Ru(CO)12 with tertiary phosphines and phosphites
Authors:Tapani Venäläinen  Tapani Pakkanen
Institution:Department of Chemistry, University of Joensuu, P.O. Box 111, SF-80101 Joensuu 10 Finland
Abstract:Ligand substitution of the mixed-metal clusters FeRu2(CO)12 and Fe2Ru(CO)12 with triphenylphosphine and trimethylphosphite has been studied. Mono- and di-substituted derivatives have been synthesized and characterized structurally. The following crystal and molecular structures are reported: Fe2Ru(CO)11PPh3: triclinic, space group P1, a 9.203(2), b 11.903(3), c 15.117(4) Å, α 81.54(2), β 87.28(2), γ 66.72(2)°, Z = 2; Fe2Ru(CO)11P(OMe)3: orthorhombic, space group Pna21, a 17.220(5), b 14.572(4), c 8.708(6) Å, Z = 4, FeRu2(CO)11PPh3: monoclinic, space group P21/n, a 11.435(3), b 16.034(5), c 16.642(4) Å, β 93.35(2)°, Z = 4; FeRu2(CO)10(PPh3)2: orthorhombic, space group Pccm, a 14.854(4), b 17.180(7), c 16.786(12) Å, Z = 4.Ligand substitution is found to occur preferentially at the ruthenium centers of the FeRu2 and Fe2Ru clusters. Monosubstitution causes expansion of both of the clusters while the overall geometry is practically unchanged. Disubstitution of FeRu2(CO)12 causes contraction of the cluster and leads to a formation of carbonyl bridges. The structural trends have been interpreted in terms of electronic and packing effects of ligand substitution. The X-ray structures of Fe2Ru(CO)12 and FeRu2(CO)12 are not known; the ligand substitution studies indicate that Fe2Ru(CO)12 has the same structure as Fe3(CO)12, and that FeRu3(CO)12 does not have a Ru3(CO)12 structure as postulated previously from the IR studies.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号