首页 | 本学科首页   官方微博 | 高级检索  
     检索      


X-ray absorption spectra of hexagonal ice and liquid water by all-electron Gaussian and augmented plane wave calculations
Authors:Iannuzzi Marcella
Institution:Paul Scherrer Institut, CH-5232, Villigen PSI, Switzerland. marcella.iannuzzi-mauri@psi.ch
Abstract:Full potential x-ray spectroscopy simulations of hexagonal ice and liquid water are performed by means of the newly implemented methodology based on the Gaussian augmented plane waves formalism. The computed spectra obtained within the supercell approach are compared to experimental data. The variations of the spectral distribution determined by the quality of the basis set, the size of the sample, and the choice of the core-hole potential are extensively discussed. The second part of this work is focused on the understanding of the connections between specific configurations of the hydrogen bond network and the corresponding contributions to the x-ray absorption spectrum in liquid water. Our results confirm that asymmetrically coordinated molecules, in particular, those donating only one or no hydrogen bond, are associated with well identified spectral signatures that differ significantly from the ice spectral profile. However, transient local structures, with half formed hydrogen bonds, may still give rise to spectra with dominant postedge contributions and relatively weaker oscillator strengths at lower energy. This explains why by averaging the spectra over all the O atoms of liquid instantaneous configurations extracted from ab initio molecular dynamics trajectories, the spectral features indicating the presence of weak or broken hydrogen bonds turn out to be attenuated and sometimes not clearly distinguishable.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号