首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Hydrogen/deuterium exchange for higher specificity of protein identification by peptide mass fingerprinting
Authors:Bienvenut Willy V  Hoogland Christine  Greco Anna  Heller Manfred  Gasteiger Elisabeth  Appel Ron D  Diaz Jean-Jacques  Sanchez Jean-Charles  Hochstrasser Denis F
Institution:Central Clinical Chemistry Laboratory, Geneva University Hospital, Rue Micheli-du-Crest 24, CH-1211 Geneva 14, Switzerland. William.bienvenut@dim.hcuge.ch
Abstract:Genome sequencing projects produce large amounts of information that could be translated into potential protein sequences. Such amounts of material continuously increase protein database sizes. At present, 22 times more protein sequences are available in the SWISS-PROT and TrEMBL databases than 8 years ago in SWISS-PROT. One of the methods of choice for protein identification makes use of specific endoproteolytic cleavage followed by matrix-assisted laser desorption/ionisation mass spectrometric (MALDI-MS) analysis of the digested product. Since 1993, when this technique was first demonstrated, the conditions required for a correct identification have changed dramatically. Whilst 4-5 peptides with an uncertainty of 2-3 Da were sufficient for a correct identification in 1993, 10-13 peptides with less than 60 ppm mass error are now required for human and E. coli proteins. This evolution is directly related to the continuous increase in protein database sizes, which causes an increase in the number of false positive matches in identification results. Use of an information complement deduced from the primary protein sequence, in the process of identification by peptide mass fingerprints, can help to increase confidence in the identification results. In this article, we propose the exchange of labile hydrogen atoms with deuterium atoms to provide an alternative information complement. The exchange reaction with optimised techniques has shown an average 95% of hydrogen/deuterium (H/D) exchange on tryptic peptides. This level of exchange was sufficient to single out one or more peptides from a list of potential candidate proteins due to the dependence of H/D exchange on the peptide primary structure. This technique also has clear advantages in the identification of small proteins where direct protein identification is impaired by the limited number of endoproteolytic peptides. Then, information related to primary sequence obtained with this technique could help to identify proteins with high confidence without any expensive tandem mass spectrometry instruments.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号