首页 | 本学科首页   官方微博 | 高级检索  
     


Polymerization of oil (styrene and methylmethacrylate)-in-water microemulsions
Authors:N. Girard  T. F. Tadros  I. Bailey
Affiliation:(1) ZENECA Agrochemicals Jealott’s Hill Research Station Bracknell Berkshire RG12 6EY UK, GB;(2) Department of Chemical Engineering and Chemical Technology Imperial College of Science Technology and Medicine Prince Consort Road London SW7 2BY UK, GB
Abstract: The polymerization of styrene-in-water and methylmeth-acrylate-in-water microemulsions stabilized by nonionic surfactants was investigated using different initiation techniques. Thermally induced initiation was carried out using potassium persulfate (water soluble) and azobisiso-butyronitrile (AIBN) (oil soluble) at 60° and 50°C, respectively. When the monomer concentration was kept below a certain limit, the particle size of the nanolatex was similar to the droplet size of the microemulsion precursor. At higher monomer concentrations, the latex produced was significantly larger than the microemulsion droplets, as a result of the possible coalescence of the microemulsion droplets during polymerization. By using chemically induced polymerization (hydrogen peroxide+ascorbic acid) at temperatures below the cloud point temperature of the microemulsion or by photochemically induced initiation at room temperature, it was possible to obtain nanolatex particles with similar size to the droplets up to 10% monomer content. In all cases, the particle size was determined using photon correlation spectroscopy (PCS). Electron micrographs of the microlatex particles were taken and these confirmed the measurements obtained by PCS. The molecular weight of the polymers produced was determined by gel permeation chromatography. The average number of polymer molecules per particle was calculated. It was shown in some cases that the nanolatex contained one polymer chain per particle. A mechanism was suggested for polymerization and particle growth. Received: 29 May 1997 Accepted: 28 May 1998
Keywords:  Microemulsions  polymerization  nanolatex
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号