首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Gelation of charged bio-nanocompartments induced by associative and non-associative polysaccharides
Authors:Antunes Filipe E  Coppola Luigi  Rossi Cesare Oliviero  Ranieri Giuseppe Antonio
Institution:Department of Chemistry, University of Calabria, Cubo 14/D, 87036 Arcavacata di Rende, Cosenza, Italy. fantunes@eq.uc.pt
Abstract:Vesicles composed of sodium oleate (NaO) and monoolein (MO) are adequate candidates for drug nanoencapsulation and controlled release due to their stability and perceived biocompatibility. The object of the present study is to design hydrogels based on those anionic vesicles and polymers of both non-associative and associative type. The selected macromolecules were k-carrageenan (KC), carboxymethyl cellulose (CMC) and hydrophobically modified carboxymethyl cellulose (HMCMC). While the polymer-vesicle association was probed by rheology, the influence of the polymer on the vesicle stability was monitored by cryo-TEM and calorimetric measurements. The effects of the polymer on the rheological properties of surfactant aggregate solutions clearly depend on the polymer type: the storage moduli of the polymer-vesicle mixtures, compared to the vesicles alone, increases around 2 orders of magnitude if the polymer is non-associative and 4 orders of magnitude if the macromolecule is of associative type. As the vesicles are added, the non-associative polymer networks tend to be disrupted, while the networks formed by associative polymer get more robust. These observations can be explained by fundamental changes in electrostatic/hydrophobic interactions: vesicles entrapped in KC networks convert the polysaccharide in a highly charged entity and favor high electrostatic repulsions between the chains; this encourages network collapse. The opposite picture is experienced in HMCMC systems, i.e., such network is stabilized by the presence of vesicles. This is ascribed to the enhanced hydrophobic association, compensating the electrostatic repulsions between vesicles and polymer chains.
Keywords:Biovesicle  k-Carrageenan  HMCMC  Carboxymethyl cellulose  Sodium oleate  Monoolein  Networks
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号