首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Studies on the dephosphorylation of phosphotyrosine-containing peptides during post-source decay in matrix-assisted laser desorption/ionization
Authors:Metzger S  Hoffmann R
Institution:Biologisch-Medizinisches Forschungszentrum, Heinrich-Heine-Universit?t, Düsseldorf, Germany.
Abstract:Phosphorylation of tyrosine residues in proteins is a common regulatory mechanism, although it accounts for less than 1% of the total O-phosphate content in proteins. Whereas aromatic phosphorylation sites can be identified by a number of different analytical techniques, sequence analysis of phosphotyrosine-containing proteins at the low picomole or even femtomole level is still a challenging task. This paper describes the post-source decay in matrix-assisted laser desorption/ionization mass spectrometry of phosphotyrosine-containing model peptides by comparing their fragmentation behavior with sequence-homologous unphosphorylated peptides. Whereas the parent ions showed significant losses of HPO3, all phosphorylated fragment ions of the b- and y-series displayed only minor dephosphorylated signals, which often were not detectable. Surprisingly, one of the studied phosphotyrosine-containing sequences displayed, in addition to the M + H - 80]+ ion, a more abundant M + H - 98]+ ion, which could be explained by elimination of phosphoric acid. This dephosphorylation pattern was very similar to the patterns obtained for phosphoserine- and phosphothreonine-containing peptides. Because the dephosphorylation pattern of the parent ion is often used to identify modified amino acids in peptides, we investigated possible dephosphorylation mechanisms in detail. Therefore, we substituted single trifunctional amino acid residues and incorporated deuterated phosphotyrosine residues. After excluding direct elimination of phosphoric acid from tyrosine, we could show that the obtained loss of H3PO4 depends on aspartic acid and arginine residues. Most likely the HPO3 group is transferred to aspartic acid followed by cleavage of phosphoric acid forming a succinimide. On the other hand, arginine appears to induce the H3PO4 loss by protonation of phosphotyrosine leaving a phenyl cation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号