首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Averaging of systems of differential inclusions with slow and fast variables
Authors:O P Filatov
Institution:1.Samara State University,Samara,Russia
Abstract:
We consider the system of differential inclusions
$$\dot x \in \mu F(t, x, y, \mu ), x(0) = x_0 , \dot y \in G(t, x, y, \mu ), y(0) = y_0 $$
, where F,G: D (\(R^{m_1 } \)), (\(R^{m_2 } \)) are mappings into the sets of nonempty convex compact sets in the Euclidean spaces \(R^{m_1 } \) and \(R^{m_2 } \), respectively, D = R + × \(R^{m_1 } \) × \(R^{m_2 } \) × 0, a], a > 0, and µ is a small parameter. The functions F and G and the right-hand side of the averaged problem \(\dot u\) ∈ µF 0(u), u(0) = x 0, F 0(u) ∈ (\(R^{m_1 } \)), satisfy the one-sided Lipschitz condition with respect to the corresponding phase variables. Under these and some other conditions, we prove that, for each ? > 0, there exists a µ > 0 such that, for an arbitrary µ ∈ (0, µ0] and any solution x µ(·), y µ(·) of the original problem, there exists a solution u µ(·) of the averaged problem such that ∥x µ(t) ? y µ(t) ∥ ≤ ? for t ∈ 0, 1/µ]. Furthermore, for each solution u µ(·)of the averaged problem, there exists a solution x µ(·), y µ(·) of the original problem with the same estimate.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号