首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Population and deactivation of lowest lying barium levels by collisions with He,Ar, Xe and Ba ground state atoms
Authors:C Vadla  K Niemax  V Horvatic  R Beuc
Institution:1. Institute of Physics of the University, Bijenicka 46, 10000, Zagreb, Croatia
2. Institut für Physik, Universit?t Hohenheim, Garbenstrasse 30, D-70599, Stuttgart, Germany
Abstract:Excitation transfer between the barium low lying excited states 6s6p 3 P 1 0 , 6s5d 1 D 2 and 6s5d 3 D J by collisions with He,Ar,Xe and Ba has been investigated. The population densities in all levels involved were probed by absorption or by fluorescence usingcw lasers. The depopulation cross sections of the Ba3 P 1 0 state by collisions with noble gases were found to be σHe(3 P 1 0 )=5.5·10?16 cm2, σAr(3 P 1 0 )=4.6·10?16 cm2, and σXe(3 P 1 0 )=1.7·10?16 cm2. For Ar, the collisional depopulation of the3 P 1 0 level is exclusively due to the transition to the1 D 2 state. Under the assumption that the3 D J metastable states are populated collisionally by1 D 23 D J transfer only, we have deduced the upper limit for the corresponding cross section σ 13 Ar =1.5·10?18 cm2. From the Ba1 D 2 and Ba3 D J steady-state diffusion distributions, collisional relaxation rates of the1 D 2 and3 D J levels were evaluated. The collisional relaxation rates by Ar and Ba yielded total cross sections for the depopulation of metastable levels: σAr(1 D 2)=1.5·10?17 cm2, σBa(1 D 2)?1·10?13 cm2, σAr(3 D J)=7·10?21 cm2, and σBa(3 D J)=1·10?15 cm2. Furthermore, it was found that the main contribution of the collisional depopulation of the1 D 2 state by Ar is related to back transfer to the3 P J 0 state, whereas the deactivation of the3 D J metastable state is due to back transfer to the1 D 2 state. Taking into account other cross sections reported in literature we can conclude that collisional deactivation of both metastable levels by Ba ground state atoms can be attributed to their mutual collisional mixing.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号