首页 | 本学科首页   官方微博 | 高级检索  
     


In(OH)3 and In2O3 nanorod bundles and spheres: microemulsion-mediated hydrothermal synthesis and luminescence properties
Authors:Yang Jun  Lin Cuikun  Wang Zhenling  Lin Jun
Affiliation:Key Laboratory of Rare Earth Chemistry and Physics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China.
Abstract:Indium hydroxide, In(OH)3, nano-microstructures with two kinds of morphology, nanorod bundles (around 500 nm in length and 200 nm in diameter) and caddice spherelike agglomerates (around 750-1000 nm in diameter), were successfully prepared by the cetyltrimethylammonium bromide (CTAB)/water/cyclohexane/n-pentanol microemulsion-mediated hydrothermal process. Calcination of the In(OH)3 crystals with different morphologies (nanorod bundles and spheres) at 600 degrees C in air yielded In2O3 crystals with the same morphology. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and photoluminescence (PL) spectra as well as kinetic decays were used to characterize the samples. The pH values of microemulsion play an important role in the morphological control of the as-formed In(OH)3 nano-microstructures from the hydrothermal process. The formation mechanisms for the In(OH)3 nano-microstructures have been proposed on an aggregation mechanism. In2O3 nanorod bundles and spheres show a similar blue emission peaking around 416 and 439 nm under the 383-nm UV excitation, which is mainly attributed to the oxygen vacancies in the In2O3 nano-microstructures.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号