首页 | 本学科首页   官方微博 | 高级检索  
     检索      


2‐Phenanthrenyl–DNA: Synthesis,Pairing, and Fluorescence Properties
Authors:Nikolay A Grigorenko Dr  Christian J Leumann Prof
Institution:Department of Chemistry & Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern (Switzerland), Fax: (+41)?31‐631‐3422
Abstract:Three 2′‐phenanthrenyl‐C‐deoxyribonucleosides with donor (phenNH2), acceptor (phenNO2), or no (phenH) substitution on the phenanthrenyl core were synthesized and incorporated into oligodeoxyribonucleotides. Duplexes containing either one or three consecutive phenR residues, which were located opposite each other, were formed. Within these residues, the phenR residues are expected to recognize each other through interstrand stacking interactions, in much the same way as described previously for biphenyl DNA. The thermal, thermodynamic, and fluorescence properties of such duplexes were determined by UV melting analysis and fluorescence spectroscopy. Depending on the nature of the substituent, the thermal stability of single‐modified duplexes can vary between ?2.7 to +11.3 °C in Tm and that of triple‐modified duplexes from +7.8 to +11.1 °C. Van′t Hoff analysis suggested that the observed higher thermodynamic stability in phenH‐ and phenNO2‐containing duplexes is of enthalpic origin. A single phenH or phenNO2 residue in a bulge position also stabilizes a corresponding duplex. If a phenNO2 residue is placed in a bulge position next to a base mismatch this can lead, in a sequence‐dependent manner, to duplex destabilization. The phenNO2 residue was found to be a highly efficient (10–100‐fold) quencher of phenH and phenNH2 fluorescence if placed in the opposite position to the fluorophores. When phenH and phenNH2 residues were placed opposite each other, efficient quenching of phenH and enhancement of phenNH2 fluorescence was found, which is an indicator for electron‐ or energy‐transfer processes between the aromatic units.
Keywords:DNA recognition  hydrophobic bases  oligonucleotides  phenanthrene  stacking interactions
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号