首页 | 本学科首页   官方微博 | 高级检索  
     


Real-time observation of template-assisted colloidal aggregation and colloidal dispersion under an alternating electric field
Authors:Li Chao-Rong  Li Shu-Wen  Mei Jie  Xu Qing  Zheng Ying-Ying  Dong Wen-Jun
Affiliation:Department of Physics, Center for Optoelectronics Materials and Devices, and Key Laboratory of Advanced Textile Materials & Manufacturing Technology of Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
Abstract:A fascinating colloid phenomenon was observed in a specially designed template-assisted cell under an alternating electrical field. Most colloidal particles experienced the processes of aggregation, dispersion and climbing up to the plateaus of the patterns pre-lithographed on the indium tin oxide glass as the frequency of the alternating electrical field increased. Two critical frequencies fcrit1 ≈ 15 kHz and fcrit2 ≈ 40 kHz, corresponding to the transitions of the colloid behaviour were observed. When f < 15 kHz, the particles were forced to aggregate along the grooves of the negative photoresist patterned template. When 15 kHz < f < 40 kHz, the particle clusters became unstable and most particles started to disperse and were blocked by the fringes of the negative photoresist patterns. As the frequency increased to above 40 kHz, the majority of particles started to climb up to the plateaus of the patterns. Furthermore, the dynamics analysis for the behaviour of the colloids was given and we found out that positive or negative dielectrophoresis force, electrohydrodynamic force, particle—particle interactions and Brownian motion change with the frequency of the alternating electric field. Thus, changes of the related forces affect or control the behaviour of the colloids.
Keywords:template-assisted  aggregation  dispersion  dynamics analysis
本文献已被 维普 等数据库收录!
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号