首页 | 本学科首页   官方微博 | 高级检索  
     


A reductionist biomimetic model system that demonstrates highly effective Zn(II)-catalyzed cleavage of an RNA model
Authors:Liu C Tony  Neverov Alexei A  Brown R Stan
Affiliation:Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, Canada.
Abstract:The cyclization of the RNA model 2-hydroxypropyl p-nitrophenyl phosphate (HPNPP, 1) promoted by Zn2+ alone and the 1,5,9-triazacyclododecane complex of Zn2+ (Zn2+:[12]aneN3) is studied in ethanol in the presence of 0.5 equiv of -OEt/Zn2+ to investigate the effect of a low polarity/dielectric medium on a metal-catalyzed reaction of biological relevance. Ethanol exerts a medium effect that promotes strong binding of HPNPP to Zn2+, followed by a dimerization to form a catalytically active complex (HPNPP:Zn2+)2 in which the phosphate undergoes cyclization with a rate constant of kcat = 2.9 s(-1) at s(s)pH 7.1. In the presence of the triaza ligand:Zn2+ complex, the change from water to methanol and then to ethanol brings about a mechanism where two molecules of the complex, suggested as EtOH:Zn2+:[12]aneN3 and its basic form, EtO-:Zn2+:[12]aneN3, bind to HPNPP and catalyze its decomposition with a rate constant of kcat of 0.13 s(-1) at s(s)pH 7.1. Overall, the acceleration exhibited in these two situations is 4 x 10(14)-fold and 1.7 x 10(12)-fold relative to the background ethoxide-promoted reactions at the respective s(s)pH values. The implications of these findings are discussed within the context of the idea that enzymatic catalysis is enhanced by a reduced effective dielectric constant within the active site.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号