首页 | 本学科首页   官方微博 | 高级检索  
     


Nonenzymatic Dynamic Kinetic Resolution of Secondary Alcohols via Enantioselective Acylation: Synthetic and Mechanistic Studies
Authors:Sarah Yunmi Lee  Jaclyn M Murphy  Atsushi Ukai  Gregory C Fu
Affiliation:Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States.
Abstract:Because of the ubiquity of the secondary carbinol subunit, the development of new methods for its enantioselective synthesis remains an important ongoing challenge. In this report, we describe the first nonenzymatic method for the dynamic kinetic resolution (DKR) of secondary alcohols (specifically, aryl alkyl carbinols) through enantioselective acylation, and we substantially expand the scope of this approach, vis-à-vis enzymatic reactions. Simply combining an effective process for the kinetic resolution of alcohols with an active catalyst for the racemization of alcohols did not lead to DKR, due to the incompatibility of the ruthenium-based racemization catalyst with the acylating agent (Ac(2)O) used in the kinetic resolution. A mechanistic investigation revealed that the ruthenium catalyst is deactivated through the formation of a stable ruthenium-acetate complex; this deleterious pathway was circumvented through the appropriate choice of acylating agent (an acyl carbonate). Mechanistic studies of this new process point to reversible N-acylation of the nucleophilic catalyst, acyl transfer from the catalyst to the alcohol as the rate-determining step, and carbonate anion serving as the Br?nsted base in that acyl-transfer step.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号