首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Interaction of acetonitrile with alkaline metal cations: A density functional,coupled‐cluster,and quadratic configuration interaction study
Authors:Ljup o Pejov
Institution:Ljupčo Pejov
Abstract:A systematic quantum chemical study of CH3CN and its CH3CN?M+ 1:1 model adducts (M+∈{Li+, Na+}) is presented, with respect to binding energetics, structural and vibrational force field changes. Several gradient‐corrected density functional levels of theory were employed (of both “pure” and “hybrid” character), together with the coupled cluster including double substitutions from the Hartree–Fock determinant (CCD) and quadratic configuration interaction including single and double substitutions (QCISD) methods with the rather large 6‐311G(d,p) basis set], and their performances compared. The binding energy decompositions according to the Kitaura–Morokuma scheme and the reduced variational space self‐consistent field (RVS‐SCF) method have shown that the electrostatic plus polarization interaction terms are primarily responsible for overall stabilization, while the charge‐transfer term is negligibly small and virtually identical for both adducts. The computed harmonic vibrational frequencies for acetonitrile correlate excellently with the experimental ones (r2>0.9998 for almost all cases, while for the BLYP level, r2=1). It is shown for the first time that the experimentally observed blue shifts of the νCN mode are caused even by formation of 1:1 adducts, contrary to the previously accepted opinions. The CCD and QCISD, as well as the BPW91 and BP86 levels of theory predict almost excellently the νCN mode blue shift upon adduct formation, while the BLYP and B3LYP levels perform significantly poorer. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem, 2001
Keywords:acetonitrile metal adducts  density functional theory  coupled‐cluster methods  quadratic configuration interaction  vibrational frequency shifts
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号