首页 | 本学科首页   官方微博 | 高级检索  
     检索      


SYNTHETIC CAROTENOIDS, NOVEL POLYENE POLYKETONES AND NEW CAPSORUBIN ISOMERS AS EFFICIENT QUENCHERS OF SINGLET MOLECULAR OXYGEN
Authors:Thomas P A  Devasagayam  Thomas  Werner  Hans  Ippendorf  Hans-Dieter  Martin Helmut  Sies
Institution:Institut für Physiologische Chemie I, Universit?t Düsseldorf, Fed. Rep. Germany.
Abstract:Novel synthetic polyene polyketones and new synthetic capsorubin isomers were examined for their ability to quench singlet molecular oxygen (1O2) generated by the thermodissociation of the endoperoxide of 3,3'-(1,4-naphthylene) dipropionate (NDPO2). C28-polyene-tetrone (1) exhibits the highest physical quenching rate constant with 1O2 (kq = 16 x 10(9) M-1 s-1). For comparison, the rate constant for the most efficient biological carotenoid, lycopene (3) is kq = 9 x 10(9) M-1 s-1 and that of beta-carotene (5) kq = 5 x 10(9) M-1 s-1. The presence of two oxalyl chromophores at the ends of the polyene chain seems to enhance the 1O2 quenching ability in the C28-polyene-tetrone (1). C28-polyene-tetrone-diacetal (2) (kq = 9 x 10(9) M-1 s-1) and C40-epiisocapsorubin (4) (kq = 8 x 10(9) M-1 s-1) also have high 1O2 quenching abilities. Two carotenoids from plants, phytoene and phytofluene, were much less efficient, kq values being below 10(7) M-1 s-1. Due to the very high singlet oxygen quenching abilities, C28-polyene-tetrone (1), C28-polyene-tetrone-diacetal (2) and C40-epiisocapsorubin (4) may have potential use in preventing 1O2-induced damage in biological and non-biological systems.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号