首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Acidification of reverse micellar nanodroplets by atmospheric pressure CO2
Authors:Levinger Nancy E  Rubenstrunk Lauren C  Baruah Bharat  Crans Debbie C
Institution:Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, USA. Nancy.Levinger@ColoState.edu
Abstract:Water absorption of atmospheric carbon dioxide lowers the solution pH due to carbonic acid formation. Bulk water acidification by CO(2) is well documented, but significantly less is known about its effect on water in confined spaces. Considering its prominence as a greenhouse gas, the importance of aerosols in acid rain, and CO(2)-buffering in cellular systems, surprisingly little information exists about the absorption of CO(2) by nanosized water droplets. The fundamental interactions of CO(2) with water, particularly in nanosized structures, may influence a wide range of processes in our technological society. Here results from experiments investigating the uptake of gaseous CO(2) by water pools in reverse micelles are presented. Despite the small number of water molecules in each droplet, changes in vanadium probes within the water pools, measured using vanadium-51 NMR spectroscopy, indicate a significant drop in pH after CO(2) introduction. Collectively, the pH-dependent vanadium probes show CO(2) dissolves in the nanowater droplets, causing the reverse micelle acidity to increase.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号