首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Donor- and acceptor-modified metallocene-based homogeneous Ziegler-Natta catalysts
Authors:David Fischer  Stephan Jüngling  Rolf Mülhaupt
Abstract:The polymerization kinetics of propene polymerization using metallocene/methylaluminoxane (MAO) homogeneous catalysts have been investigated to explore the role of donor/acceptor interactions and to enhance the catalyst productivities. In the case of the non-stereospecific Cp2ZrCl2/MAO model system it has been demonstrated that, in addition to the well known irreversible deactivation, reversible deactivations, which are second order relative to the zirconium active site concentration, account for the decay of the polymerization rate. While MAO injection during polymerization enhances the polymerization rate, zirconocene addition deactivates the catalyst which can be reactivated by injecting additional MAO. A sequence of dynamic equilibria involving the formation of active cationic metallocene intermediates as well as inactive zirconocene species, e.g., zirconocene dimers, is proposed. Lewis base and Lewis acid additives have been added as probes to examine the role of such equilibria in the case of metallocene-based catalyst systems such as MAO-activated Cp2ZrCl2, racemic ethylenebisindenyl zirconium dichloride (EBIZrCl2), and racemic ethylenebis (4,5,6,7-tetrahydroindenyl) zirconium dichloride (EBTHIZrCl2). While the conventional donors such as 2,6-ditert.butyl-4-methylphenol (BHT) and 2,2,6,6-tetramethylpiperidine (TMP) reduce catalyst productivities, even at very low donor/Al molar ratios, increasing propene concentration and addition of trimethylboroxine (TMB) substantially enhance catalyst productivities and affect molecular weights of the polypropylene produced with metallocene/MAO catalysts.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号