首页 | 本学科首页   官方微博 | 高级检索  
     


Highly efficient bipolar connecting layers for tandem organic light-emitting devices
Authors:L. Niu   Y. Guan   C. Kong   Y. Cui   Y. Ren   S. Tao   J. Zhou  J. Yu
Affiliation:(1) School of Materials Science and Engineering, China University of Mining and Technology, Xuzhou, Jiangsu, 221008, P.R. China
Abstract:A highly efficient tandem organic light-emitting device (OLED) has been fabricated by using an effective bipolar connecting layer structure. The connecting layers were made up of a layer of magnesium (Mg): 2,7-dipyrenyl-9,9-diphenyl fluorene (N-DPF) and a layer of tungsten trioxide (WO3). Such a connecting layer structure permits efficient opposite holes and electrons flowing into two adjacent emitting units. The current efficiency of the two-unit tandem device can be dramatically enhanced by more than four times compared with that of the conventional single-unit device. At 60 mA/cm2, the current efficiency of the tandem OLED using the connecting layers of Mg: N-DPF/WO3 was about 8.15 cd/A. The results can be marked as a breakthrough approach to improve the current efficiency and brightness of OLEDs. Furthermore, a model of the carrier tunneling into light-emitting units is proposed based on carrier balance and field-assisted tunneling. It indicates that the connecting layer structure functions as the origin of high efficiency for the tandem OLEDs.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号