首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Selective functionalization of independently addressed microelectrodes by electrochemical activation and deactivation of a coupling catalyst
Authors:Devaraj Neal K  Dinolfo Peter H  Chidsey Christopher E D  Collman James P
Institution:Department of Chemistry, Stanford University, Stanford, CA 94305-5080, USA.
Abstract:We demonstrate selective functionalization of independently addressed microelectrodes by electrochemical activation and deactivation of a coupling catalyst. 1,2,3-Triazole formation between terminal acetylenes and organic azides is efficiently catalyzed by copper(I) complexes (a Sharpless "click" reaction), while the oxidized copper(II) complexes are inactive. By electrochemically activating or deactivating the catalyst by switching its redox state, we demonstrate control over triazole formation between surface-immobilized azides and ethynylferrocene. The reaction proceeds on the time scale of minutes using submicromolar concentration of reactants and catalyst, requires mild potentials for catalyst activation and deactivation, and works in aqueous and mixed aqueous-organic solvents. By appropriate biasing of each electrode, we selectively modify one of two chemically identical 10-mum-wide electrodes separated by 10 mum in an interdigitated array. The ability to switch on or off the reaction by electrical addressing together with the chemoselectivity of this reaction makes Cu(I)-catalyzed triazole formation an ideal method for the chemical modification of multielectrode arrays.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号