首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Solution-state dynamics of sugar-connected spin probes in sucrose solution as studied by multiband (L-, X-, and W-band) electron paramagnetic resonance
Authors:Fukui Kôichi  Ito Tomohiro  Tada Mika  Aoyama Masaaki  Sato Shingo  Onodera Jun ichi  Ohya Hiroaki
Institution:Regional Joint Research Project of Yamagata Prefecture, Yamagata Public Corporation for the Development of Industry, Matsuei 2-2-1, 990-2473 Yamagata, Japan. fukui@ckk.ymgt-techno.or.jp
Abstract:A multiband (L-band, 0.7GHz; X-band, 9.4GHz; and W-band, 94GHz) electron paramagnetic resonance (EPR) study was performed for two glycosidated spin probes, 4-(alpha,beta-D-glucopyranosyloxy)-TEMPO (Glc-TEMPO) and 4-(alpha,beta-D-lactopyranosyloxy)-TEMPO (Lac-TEMPO), and one non-glycosylated spin probe, 4-hydroxy-TEMPO (TEMPOL), where TEMPO=2,2,6,6-tetramethyl-1-piperidinyloxyl, to characterize fundamental hydrodynamic properties of sugar-connected spin probes. The linewidths of these spin probes were investigated in various concentrations of sucrose solutions (0-50wt%). The multiband approach has allowed full characterization of the linewidth parameters, providing insights into the molecular shapes of the spin probes in sucrose solution. The analysis based on the fast-motional linewidth theory has yielded anisotropy parameters of rho(x) approximately 2.6 and rho(y) approximately 0.9 for Glc-TEMPO, and rho(x) approximately 4.2 and rho(y) approximately 0.9 for Lac-TEMPO. These values indicate that the glycosidated spin probes have a prolate-type molecular shape elongated along the x-axis (NO(rad) axis) with Lac-TEMPO elongated more remarkably, consistent with their molecular structures. The interaction parameters k (the ratios of the effective hydrodynamic volumes to the real ones) corrected for the difference in molecular shape have been estimated and found to have the relation k(TEMPOL)
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号