Toward a glucose biosensor based on surface-enhanced Raman scattering |
| |
Authors: | Shafer-Peltier Karen E Haynes Christy L Glucksberg Matthew R Van Duyne Richard P |
| |
Affiliation: | Department of Biomedical Engineering, Northwestern University Evanston, Illinois 60208-3113, USA. |
| |
Abstract: | This work presents the first step toward a glucose biosensor using surface-enhanced Raman spectroscopy (SERS). Historically, glucose has been extremely difficult to detect by SERS because it has a small normal Raman cross section and adsorbs weakly or not at all to bare silver surfaces. In this paper, we report the first systematic study of the direct detection of glucose using SERS. Glucose is partitioned into an alkanethiol monolayer adsorbed on a silver film over nanosphere (AgFON) surface and thereby, it is preconcentrated within the 0-4 nm thick zone of electromagnetic field enhancement. The experiments presented herein utilize leave-one-out partial least-squares (LOO-PLS) analysis to demonstrate quantitative glucose detection both over a large (0-250 mM) and clinically relevant (0-25 mM) concentration range. The root-mean-squared error of prediction (RMSEP) of 1.8 mM (33.1 mg/dL) in the clinical study is near that desired for medical applications (1 mM, 18 mg/dL). Future studies will advance toward true in vivo, real time, minimally invasive sensing. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|