首页 | 本学科首页   官方微博 | 高级检索  
     


Substitution behavior of square-planar and square-pyramidal Cu(II) complexes with bio-relevant nucleophiles
Authors:Enisa Selimović  Andrei V. Komolkin  Andrei V. Egorov
Affiliation:1. Department of Chemical-Technological Sciences, State University of Novi Pazar, Novi Pazar, Serbia;2. Faculty of Physics, Department of Nuclear-Physics Research Methods, St. Petersburg State University, Saint Petersburg, Russia
Abstract:Substitution reactions of [CuCl2(en)] and [CuCl2(terpy)] complexes (where en = 1,2-diaminoethane and terpy = 2,2′:6′,2″-terpyridine) with bio-relevant nucleophiles such as inosine-5′-monophosphate (5′-IMP), guanosine-5′-monophosphate (5′-GMP), L-methionine (L-Met), glutathione (GSH) and DL-aspartic acid (DL-Asp) have been investigated at pH 7.4 in the presence of 0.010 M NaCl. Mechanism of substitution was probed via mole-ratio, kinetic, mass spectroscopic and EPR studies at pH 7.4. In the presence of an excess of chloride, the octahedral complex anion [CuCl4(en)]2? is formed rapidly while equilibrium reaction was observed for [CuCl2(terpy)]. Different order of reactivity of bio-molecules toward Cu(II) complexes was observed. Mass spectrum of [CuCl2(terpy)] in Hepes buffer has shown two new signals at m/z = 477.150 and m/z = 521.00, assigned to [CuCl(terpy)]+-Hepes fragments of coordinated Hepes buffer. These signals also appear in the mass spectra of ligand substitution reactions between [CuCl2(terpy)] and bio-molecules in molar ratio 1:1 and 1:2. According to EPR data, L-Met forms the most stable complex with [CuCl2(en)] among the ligands considered, while [CuCl2(terpy)] complex did not show significant changes in its square-pyramidal geometry in the presence of the buffer or bio-ligands.
Keywords:Copper(II)  bio-molecules  structure – reactivity correlation  kinetics  MS analysis  EPR studies
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号