首页 | 本学科首页   官方微博 | 高级检索  
     


Relativistic effects on information measures for hydrogen-like atoms
Authors:Jacob Katriel  K.D. Sen
Affiliation:School of Chemistry, University of Hyderabad, Hyderabad-500 046, India
Abstract:Position and momentum information measures are evaluated for the ground state of the relativistic hydrogen-like atoms. Consequences of the fact that the radial momentum operator is not self-adjoint are explicitly studied, exhibiting fundamental shortcomings of the conventional uncertainty measures in terms of the radial position and momentum variances. The Shannon and Rényi entropies, the Fisher information measure, as well as several related information measures, are considered as viable alternatives. Detailed results on the onset of relativistic effects for low nuclear charges, and on the extreme relativistic limit, are presented. The relativistic position density decays exponentially at large r, but is singular at the origin. Correspondingly, the momentum density decays as an inverse power of p. Both features yield divergent Rényi entropies away from a finite vicinity of the Shannon entropy. While the position space information measures can be evaluated analytically for both the nonrelativistic and the relativistic hydrogen atom, this is not the case for the relativistic momentum space. Some of the results allow interesting insight into the significance of recently evaluated Dirac-Fock vs. Hartree-Fock complexity measures for many-electron neutral atoms.
Keywords:Relativistic H atom   Heisenberg uncertainty relation   Shannon and Ré  nyi entropies   Fisher information measure   Statistical complexity
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号