首页 | 本学科首页   官方微博 | 高级检索  
     


Doping of Ceria-Zirconia Solid Solution with Rare-earth Elements
Authors:HU Yu-cai  FENG Chang-gen  WANG Li-qiong  WANG Ya-jun
Abstract:The increasingly restrictive regulations on car exhaust emissions will necessitate the development of a new generation of three way catalysts (TWC) with better performance1. Ceria (CeO2) is the main component of the current TWC: its key role is to compensate the fluctuations in the exhaust stream composition, therefore, allowing to expand the air/fuel(A/F) operating window of catalytic converters2. This property is related to its oxygen storage capacity (OSC), associated to the redox couple Ce4+/Ce3+. However, CeO2 alone is easy to sinter to lost OSC at high temperature3.Ceria-zirconia (CexZr1-xO2) solid solutions by incorporation of Zr4+ in the CeO2 lattice have enhanced OSC and greater thermal stability, which are becoming the key materials for the new generation of TWC4. OSC of ceria-zirconia solid solutions can be further improved by the addition of M3+ dopants5. Besides Ce, other rare-earth elements such as Pr and Tb can vary their oxidation state. Pr and Tb are particularly suitable for making solid solutions with cerium because the known structure of PrO2 and TbO2 is of the cubic fluorite type, and the ionic radii of Pr4+ and Tb4+ are close to that of Ce4+6.In this paper, Ce0.6Zr0.3M0.1O2 (M=Y, La, Pr, Tb) were prepared by co-precipitation technique and characterized by a series of methods. Meanwhile, palladium-only TWCs were prepared by slurry coating and their catalytic activity was evaluated under the condition of simulated exhaust in the lab.XRD and FT-Raman spectra results show Ce0.6Zr0.3M0.1O2 have cubic fluorite structure which keep unchanging at high temperature. The different dopant ion radii brought different effect on the cell parameter of Ce0.6Zr0.3M0.1O2. The X-ray photoelectron spectroscopy (XPS) results show that the binding energy of Ce3d, Zr3d and O1s for Ce0.6Zr0.3M0.1O2 rose compared with that for Ce0.6Zr0.4O2, indicating dopant elements changed chemistry environment of solid solutions which was available to improve redox performance From TPR results, doping La can not change redox performance of solid solution, but doping Y decreased reduction temperature. Doping Pr and Tb notably improved redox performance of solid solutions due to appearance of low-temperature reduction peak in TPR profile which come from mobility of bulk oxygen.Compared with Pd/Ce0.6Zr0.4O2, doping Y and La unchanged A/F characteristic of TWCs, but doping Pr and Tb widen A/ F operating window and make HC, CO and NO have higher conversion.The light-off temperature of Pd/Ce0.6Zr0.3La0.1O2 was corresponded to that of Pd/Ce0.6Zr0.4O2.However, the light-off temperatures of Pd/Ce0.6Zr0.3M0.1O2 (M=Y, Pr, Tb) were lower than that of Pd/Ce0.6Zr0.4O2, which kept much lower after high temperature treatments. Among Pd/Ce0.6Zr0.3M0.1O2 (M=Y, La, Pr, Tb), Pd/Ce0.6Zr0.3Tb0.1O2 showed wider A/F operating window,higher conversion, lower light-off temperature and better high-temperature resistance
Keywords:ceria-zirconia solid solution  doping  Ce0.6Zr0.3M0.1O2 (M=Y  La  Pr  Tb)  three- way catalyst
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号