首页 | 本学科首页   官方微博 | 高级检索  
     


Modeling SN2 reactions in methanol solution by ab initio calculation of nucleophile solvent-substrate clusters
Authors:Lin Xufeng  Zhao Cunyuan  Phillips David Lee
Affiliation:Department of Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong, PR China.
Abstract:[Structure: see text]. Ab initio calculations were used to study the S(N)2 reactions of the CH3OCH2I molecule with a methoxide ion (CH3O-) and a methanol molecule by systematically building up the reaction system with explicit incorporation of the methanol solvent molecules. For the reaction of CH3OCH2I with a methoxide ion, the explicit incorporation of the methanol molecules to better solvate the methoxide ion led to an increase in the barrier to reaction. For the reaction of CH3OCH2I with a methanol molecule, the explicit incorporation of the methanol molecules led to a decrease in the barrier to reaction because of an inclination of this reaction to proceed with the nucleophilic displacements accompanied by proton transfer through the H-bonding chain. The H-bonding chain served as both acid and base catalysts for the displacement reaction. A ca. 10(15)-fold acceleration of the methanol tetramer incorporated S(N)2 reaction was predicted relative to the corresponding methanol monomer reaction. The properties of the reactions examined are discussed briefly.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号