首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Microwave spectrum, structure, dipole moment, and internal rotation of fluoromethyl methyl ether
Authors:Jun Nakagawa  Hiroshi Kato  Michiro Hayashi
Institution:Department of Chemistry, Faculty of Science, Hiroshima University, Higashi-sendamachi, Hiroshima 730, Japan
Abstract:Microwave spectra of fluoromethyl methyl ether and its 10 isotopically substituted species were measured. The rs structure of this molecule was determined from the observed moments of inertia. Structural parameters obtained for this molecule, which was in the gauche form, were compared with those of the analogous molecules. Dipole moments of the normal and two deuterated species were determined by Stark-effect measurements. For the normal species, the dipole moment is 1.744 ± 0.029 D making an angle of 100°54′ with the O---CH2 bond toward the C---F direction and lies in the plane whose dihedral angles with the FCO and COC planes are 114°9′ and 44°56′, respectively. The barrier to internal rotation of the methyl group was calculated taking into account the coupling effect with the skeletal torsion using the observed splitting data of the spectra in the ground, first excited methyl torsional, and skeletal torsional states. The barrier, skeletal torsional frequency, and coupling term were determined to be V3 = 1538 ± 40 cal/mole, ωt = 158 ± 4 cm−1, and Vs = 490 ± 500 cal/mole, respectively.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号