首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Ligand-dependent,palladium-catalyzed stereodivergent synthesis of chiral tetrahydroquinolines
Authors:Yue Wang  Er-Qing Li  Zheng Duan
Institution:College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001 P. R. China,
Abstract:The most fundamental tasks in asymmetric synthesis are the development of fully stereodivergent strategies to access the full complement of stereoisomers of products bearing multiple stereocenters. Although great progress has been made in the past few decades, developing general and practical strategies that allow selective generation of any diastereomer of a reaction product bearing multiple stereocentres through switching distinct chiral catalysts is a significant challenge. Here, attaining precise switching of the product stereochemistry, we develop a novel P-chirogenic ligand, i.e.YuePhos, which can be easily derived from inexpensive and commercially available starting materials in four chemical operations. Through switching of three chiral ligands, an unprecedented ligand-dependent diastereodivergent Pd-catalyzed asymmetric intermolecular 4 + 2] cycloaddition reaction of vinyl benzoxazinanone with α-arylidene succinimides was developed. This novel method provides an efficient route for the stereodivergent synthesis of six stereoisomers of pyrrolidines bearing up to three adjacent stereocenters (one quaternary center). Despite the anticipated challenges associated with controlling stereoselectivity in such a complex system, the products are obtained in enantiomeric excesses ranging up to 98% ee. In addition, the synthetic utilities of optically active hexahydrocarbazoles are also shown.

An unprecedented ligand-dependent stereodivergent Pd-catalyzed asymmetric intermolecular 4 + 2] cycloaddition reaction of vinyl benzoxazinanone with α-aryliene succinimides was developed.

The chirality of a biologically active molecule can alter its physiological properties. Therefore, highly efficient access to and fully characterizing all possible stereoisomers of a chiral molecule is one of the fundamental challenges in organic synthesis, drug discovery and development processes. However, most asymmetric catalytic transformations afford products enantioselectively and diastereoselectively and only form one of the stereoisomers containing multiple stereocenters. Stereodivergent access to all possible stereoisomers of the products is incredibly difficult because diastereochemical preference is largely dominated by the inherent structural and stereoelectronic characteristics of substrates, while absolute conformation can be dictated by the choice of the chiral catalyst.1 In 2013, Carreira and co-workers addressed this limitation by introducing the concept of stereodivergent dual-catalytic synthesis, reporting the allylation of aldehydes in a diastereodivergent fashion by the synergistic reactivity of iridium and amine catalysts under acidic conditions.2 Soon after, Carreira,3 Zhang,4 Hartwig,5 Dong,6 Wang,7 Zi,8 Lee,9 and other groups10 reported using an appropriate combination of dual chiral catalysts in a series of elegant studies (Scheme 1A). Recently, chemists found, in some cases, that tuning non-chiral parameters, including solvents or additives, also controlled the stereochemical outcomes through subtle perturbation of the key diastereomeric transition states.11 In 2018, You and co-workers reported a solvent-controlled palladium-catalyzed enantioselective dearomative formal 3 + 2] cycloaddition, affording stereodivergent synthesis of two diastereomeric tetrahydrofuroindoles.12 However, a rapid and predictable way to access complete stereoisomers of products bearing multiple stereocentres (for example, three contiguous stereocentres) remains an unsolved challenge through switching of ligands. To the best of our knowledge, only two successful examples were reported by Buchwald and Zhang, in which eight stereoisomers were obtained through tuning catalysts and reactive substrates (Scheme 1B).4a,13Open in a separate windowScheme 1Strategy for stereodivergent synthesis of different stereoisomers.In metal-catalyzed reactions, ligands can manipulate the reactivity and selectivity by affecting the steric and electronic properties of metal catalysts. Therefore, the design and development of new ligands to improve the utility, activity and selectivity of their related metal catalysts are greatly desired by organic chemists. Recently, our groups have synthesized a new and promising class of P-chiral ligands ZD-Phos (including Ganphos and Jiaphos), and their conformational rigidity and chemical robustness have endowed the structure and its variants with outstanding activity and selectivity as well as excellent stereocontrol features essential to asymmetric cycloaddition reactions.14 Inspired by these advances, we are interested in continuing the development of P-chiral ligands with new structural motifs in the search for new reactivity and selectivity to tackle current synthetic challenges. More recently, Sadphos has emerged as another superior chiral skeleton, owing to the pioneering contributions by Zhang.15 Thus its aminophosphine scaffold is envisaged to be introduced into our 1-phosphanorbornene framework (ZD-Phos).16 We aim to combine the advantages of the aforementioned two types of chiral motifs, thus developing a novel P,P-bidentate ligand. Thus the novel P-chiral ligands, called Yuephos, may show unique stereoselectivity in a metal-catalyzed asymmetric cycloaddition reaction (Fig. 1).Open in a separate windowFig. 1Design of the Yuephos framework.Tetrahydroquinolines are important molecular skeletons that widely occur in natural molecules, pharmaceuticals, and functional materials. For this reason, realizing stereodivergent synthesis of all stereoisomers of fully substituted tetrahydroquinolines has been an important and challenging task in organic synthesis. However, to date, full control of absolute and relative stereochemical configuration of these molecules has remained an unmet synthetic challenge. Considering the potentiality of fully substituted chiral tetrahydroquinolines in drug discovery and stereodivergent synthesis,17 we envisioned that using our new palladium/ZD-Phos catalytic system may offer an efficient strategy for overcoming the challenges related to regio-, enantio-, and diastereo-selectivity. Herein, we report our studies on the unexplored stereodivergent synthesis of fully substituted tetrahydroquinolines through ligand-controlled, metal-catalyzed asymmetric annulation. Six possible stereoisomers bearing two tertiary and one quaternary stereocenters were easily synthesized in good yields with high enantio- and diastereo-selectivities from the same starting materials (Scheme 1C).The new bisphosphorus ligands we report herein can be easily synthesized by a two-pot method with good yields (Scheme 2). Starting from the corresponding aldehyde18 and commercially available chiral amine, one-pot sequential reaction gave diastereomers Y1 and Y1′ with 1 : 1 dr, which could be straightforwardly separated by column chromatography. The subsequent reduction using Raney Ni produced the final Yuephos in good yields. The absolute configuration of Yue-1′ was established by single crystal X-ray diffraction.19 Importantly, the ligands Yuephos can remain stable in air and moisture for more than one year.Open in a separate windowScheme 2Synthesis of Yuephos ligands.With new Yuephos ligands in hand, we began our study by choosing vinyl benzoxazinanone 1a with α-phenylidene succinimide 2a as the model substrate, combined with the Pd2dba3·CHCl3/L complex as the catalyst. Details of Pd] source and solvent screening can be found in the ESI (Table S1 and S2). Notably, using Pd2dba3·CHCl3/Yuephos as the catalyst in ethyl acetate, the reaction proceeded smoothly, affording the desired product 3a in 69% yield with 96% ee and >20 : 1 dr (entry 1). It should be noted that Yuephos ligands were found to be efficient for this reaction, and the product 3a was obtained in good enantioselectivity with seemingly irregular yields and diastereoselectivities (entries 2–6). Trost''s ligand (L1) and chiral diphosphine ligand (L2) promoted the reaction with good diastereoselectivity but in a low yield and poor enantioselectivity (entries 7–8). However, (R)-SegPhos (L3) failed to afford the desired product (entry 9). To our surprise, when the phosphoramidite ligand (L4) was used, the diastereoselectivity was reversed compared to that in Yuephos (entry 10). Thus, a diastereodivergent phenomenon induced by the chiral ligand was discovered. To further improve the yield and selectivity, various solvents and Pd] sources were screened (Table S3 and S4 in the ESI), and an obvious improvement in the enantioselectivity and diastereoselectivity was observed when using DCM as the solvent (entries 10 vs. 11). The reaction enantioselectivity was further increased to 92% with good yield (85%) when the reaction temperature was reduced to −20 °C (entries 12–14).With the optimal conditions established for (S, R, S)-3a (20Optimization of reaction conditionsa
EntryLigandsSolventYieldb (%)drc (3a : 4a)eed (%)
1Yue-1EA69>20 : 196 (S, R, S)
2Yue-1′EA644 : 133 (S, R, S)
3Yue-2EA73>20 : 195 (R, S, R)
4Yue-3EA606 : 180 (S, R, S)
5Yue-4EA443 : 185 (S, R, S)
6Yue-5EA6214 : 190 (S, R, S)
7L1EA31>20 : 114 (S, R, S)
8L2EA42>20 : 173 (S, R, S)
9L3EA
10eL4EA641 : 1577 (S, S, S)
11eL4DCM89<1 : 2087 (S, S, S)
12e,fL4DCM89<1 : 2086 (S, S, S)
13e,gL4DCM87<1 : 2088 (S, S, S)
14e,hL4DCM85<1 : 2092 (S, S, S)
Open in a separate windowaUnless otherwise stated, reactions were performed with 1a (60 mg, 0.2 mmol) and 2a (26 mg, 0.1 mmol), in 1.0 mL of solvent at 15 °C for 72 h, and EA = ethyl acetate; DCM = dichloromethane.bIsolated yield after chromatography.cThe diastereomeric ratios were determined by column chromatography.dDetermined by HPLC analysis.eL4 (10 mol%) was used, Cs2CO3 (2.0 equiv.).fReaction temperature: 0 °C.gReaction temperature: −10 °C.hReaction temperature: −20 °C.Scope of the substrates for the synthesis of (S, R, S)-3a
Open in a separate windowaReaction conditions: see 21Scope of the substrates for the synthesis of (S, S, S)-4aa
Open in a separate windowaReaction conditions: see ). When the Pd/Meng-2 complex was used as the catalyst, its enantiomer (S, S, R)-5 was produced with moderate stereoselectivity (Scheme 3). Fortunately, six stereoisomers could be easily obtained after column chromatography, as confirmed by the high-performance liquid-chromatography traces. To the best of our knowledge, this is the first example of stereodivergent construction of six chiral tetrahydroquinolines containing three contiguous stereocenters by only switching chiral ligands (Scheme 3).Open in a separate windowScheme 3Synthesis of six stereoisomers by switching the chiral ligands. aAfter recrystallization, the mother liquor was tested to get the relevant data.To demonstrate the practicality of the reaction, a scale-up experiment was performed (Scheme 4). To our delight, the products (S, R, S)-3a and (S, S, S)-4a were obtained in 94% ee and 92% ee, respectively. Then, different transformations with regard to tetrahydroquinolines (S, R, S)-3a were conducted. At first, the hydrogenation of (S, R, S)-3a was conducted in the presence of Pd/C, furnishing the desired product 6 in 96% yield. In addition, the product (S, R, S)-3a could undergo selective hydroboration to give the anti-Markovnikov product 7 in 83% yield.Open in a separate windowScheme 4Scale-up experiment transformations of the multifunctional products.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号