首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Synthesis, Photoluminescence and Photocatalytic Performance of BiPO4 with Different Phase Structures
Authors:, WANG Yun-jian , LI Li-ping , ZHENG Jing , HUANG Xin-song , LI Guang-she
Institution:1. State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China;
2. Graduate University of Chinese Academy of Sciences, Beijing 100049, P. R. China
Abstract:Three kinds of crystal phase BiPO4(HP, LTBP, and HTBP) were selectively synthesized by controlling the preparation conditions. Structures of the three samples are all constructed by PO4 and BiO8 polyhedra but with different geometric structures. Detailed characterization was carried out by X-ray diffraction(XRD), scanning eletron microscopy(SEM) and Raman, UV-Vis, and luminescence spectrometries. Three samples exhibit huge distinctions in their photoluminescence(PL) lifetime: 0.68, 162 and 160 μs for HP, LTBP, and HTBP, respectively. More interesting, an outstanding photocatalytic activity is observed for as-prepared LTBP nanorod, which shows even higher activity for the degradation of MB solution than P25. In addition, experiments were carried out to clarify the role of hydroxyl (·OH) and superoxide radicals(O2·) played in photocatalytic process and it was found O2· was the main active species in BiPO4 photocatalysts. Further comparison of structural and photocatalytic properties of the three samples finds that structure distortion is contributed to their property difference. A correlation was found between photocatalytic performance and the distortion of BiO8 dodecahedra. The internal field generated by the distortion of BiO8 dodecahedra was believed advantageous for the separation of electron and hole, which was in favor of the improvement of photocatalytic activity. This correlation may help to design other photocatalysts with high activity.
Keywords:BiPO4  Photoluminescence  Photocatalysis
本文献已被 万方数据 等数据库收录!
点击此处可从《高等学校化学研究》浏览原始摘要信息
点击此处可从《高等学校化学研究》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号