首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Single-molecule magnets: structure and properties of [Mn18O14(O2CMe)18(hep)4(hepH)2(H2O)2](ClO4)2 with spin S = 13
Authors:Brechin E K  Sañudo E C  Wernsdorfer W  Boskovic C  Yoo J  Hendrickson D N  Yamaguchi A  Ishimoto H  Concolino T E  Rheingold A L  Christou G
Institution:Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
Abstract:The reaction of 2-(hydroxyethyl)pyridine (hepH) with a 2:1 molar mixture of Mn3O(O2CMe)6(py)3]ClO4 and Mn3O(O2CMe)6(py)3] in MeCN afforded the new mixed-valent (16Mn(III), 2Mn(II)), octadecanuclear complex Mn18O14(O2CMe)18(hep)4(hepH)2(H2O)2](ClO4)2 (1) in 20% yield. Complex 1 crystallizes in the triclinic space group P. Direct current magnetic susceptibility studies in a 1.0 T field in the 5.0-300 K range, and variable-temperature variable-field dc magnetization studies in the 2.0-4.0 K and 2.0-5.0 T ranges were obtained on polycrystalline samples. Fitting of magnetization data established that complex 1 possesses a ground-state spin of S = 13 and D = -0.18 K. This was confirmed by the value of the in-phase ac magnetic susceptibility signal. Below 3 K, the complex exhibits a frequency-dependent drop in the in-phase signal, and a concomitant increase in the out-of-phase signal, consistent with slow magnetization relaxation on the ac time scale. This suggests the complex is a single-molecule magnet (SMM), and this was confirmed by hysteresis loops below 1 K in magnetization versus dc field sweeps on a single crystal. Alternating current and direct current magnetization data were combined to yield an Arrhenius plot from which was obtained the effective barrier (U(eff)) for magnetization reversal of 21.3 K. Below 0.2 K, the relaxation becomes temperature-independent, consistent with relaxation only by quantum tunneling of the magnetization (QTM) through the anisotropy barrier via the lowest-energy MS = +/-13 levels of the S = 13 spin manifold. Complex 1 is thus the SMM with the largest ground-state spin to display QTM.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号