首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Empirical force-field assessment: The interplay between backbone torsions and noncovalent term scaling
Authors:Sorin Eric J  Pande Vijay S
Institution:Department of Chemistry, Stanford University, Structural Biology Department and SSRL85, Stanford, California 94305-5080, USA.
Abstract:The kinetic and thermodynamic aspects of the helix-coil transition in polyalanine-based peptides have been studied at the ensemble level using a distributed computing network. This study builds on a previous report, which critically assessed the performance of several contemporary force fields in reproducing experimental measurements and elucidated the complex nature of helix-coil systems. Here we consider the effects of modifying backbone torsions and the scaling of noncovalent interactions. Although these elements determine the potential of mean force between atoms separated by three covalent bonds (and thus largely determine the local conformational distributions observed in simulation), we demonstrate that the interplay between these factors is both complex and force field dependent. We quantitatively assess the heliophilicity of several helix-stabilizing potentials as well as the changes in heliophilicity resulting from such modifications, which can "make or break" the accuracy of a given force field, and our findings suggests that future force field development may need to better consider effect that vary with peptide length. This report also serves as an example of the utility of distributed computing in analyzing and improving upon contemporary force fields at the level of absolute ensemble equilibrium, the next step in force field development.
Keywords:AMBER  distributed computing  protein folding  molecular dynamics  Fs peptide
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号