首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The influence of interparticle surface forces on the coagulation of weakly magnetic mineral ultrafines in a magnetic field
Authors:Yanmin Wang  Robert J Pugh and Eric Forssberg
Institution:

a Division of Mineral Processing, Luleå University of Technology, S-971 87 Luleå, Sweden

b Institute for Surface Chemistry, S-114 86 Stockholm, Sweden

Abstract:In this paper, it is shown that the coagulation of dispersions of weakly magnetic mineral ultrafines (such as hematite and chromite) in an external magnetic field can be described theoretically by invoking interparticle forces. Essentially, coagulation occurs when the short-range London—van der Waals interactions and the long-range magnetic forces outweigh the stabilizing electric double layer repulsion. From classical colloid chemistry theory, we have calculated the various components of the potential energy for different-sized particles at a series of ionic strengths and magnetic field intensifies. Principles governing the stability of the suspensions were derived and the computations lead to the establishment of criteria which can be used to predict the stability of the suspensions of weakly magnetic oxide mineral ultrafines in a “wet magnetic separation process”.

Experimentally, the magnetic-field induced coagulation of ultrafines of natural hematite and chromite in aqueous suspensions at moderate ionic strength was investigated using a laboratory-scale electromagnetic solenoid. The experimental results relate the coagulation process (as determined by magnetosedimentation analysis) to particle size, slurry pH and the external magnetic field. In the magnetic fields, maximum coagulation occurred near the pH of the point of zero charge (pHPZC) of the minerals (where the electrostatic double layer repulsion was reduced to a minimum) enabling the particles to enter the “primary minimum” energy sink. In contrast, in cases where the electrostatic repulsion was not suppressed, the long-range magnetic forces enabled coagulation to occur in the “secondary minimum”. This caused the formation of chains which appeared to be relatively stable at enhanced rates of settling. The experimental results could be interpreted from a theoretical analysis of the interparticle forces controlling the process.

Keywords:Chromite  Colloidal stability  Haematite  Magnetic coagulation  Magnetic properties  Ultrafine
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号