首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Tensile properties of microtubules: A study by nonlinear molecular structural mechanics modelling
Institution:School of Science, Harbin Institute of Technology, Shenzhen 518055, China
Abstract:A nonlinear molecular structural mechanics (MSM) model is proposed in this paper for studying the tensile properties of microtubules (MTs). In the nonlinear MSM models, the interactions between tubulin monomers in MTs are treated as nonlinear axial and torsional springs, whose stiffness coefficients are extracted from all-atom molecular dynamics simulations. The Young's modulus and fracture properties of MTs under tension extracted from the present nonlinear MSM models are found to agree well with the existing simulation and experiment results, which shows the efficiency and accuracy of the proposed nonlinear MSM models. In addition, the nonlinear MSM models are also extended to investigate the tensile properties including Young's modulus and fracture strain of MTs possessing lattice defects. The results obtained from nonlinear MSM models are utilized to develop a predictive equation for quickly predicting the tensile properties of MTs with different lattice defect levels.
Keywords:Microtubules  Molecular structural mechanics  Molecular dynamics simulations  Mechanical properties  Fracture behaviour
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号