首页 | 本学科首页   官方微博 | 高级检索  
     


Predicting the thermal conductivity enhancement of nanofluids using computational intelligence
Affiliation:North Carolina State University, Raleigh, NC 27695, USA
Abstract:Nanofluids, composed of nanoparticles in base liquids, have drawn increasing attention in heat transfer applications due to their anomalously increased thermal conductivity. Pertinent parameters, including the base liquid thermal conductivity, particle thermal conductivity, particle size, particle volume fraction, and temperature, have been shown to have significant but complex effects on thermal performance of nanofluids, which is commonly characterized by the thermal conductivity enhancement, E%. In this work, machine learning is used to develop the Gaussian process regression model to find statistical correlations between E% and aforementioned physical parameters among various types of nanofluids. Nearly 300 nanofluid samples, dispersions of metal and ceramic nanoparticles in water, ethylene glycol, and transformer oil, are explored for this purpose. The modeling approach demonstrates a high degree of accuracy and stability, contributing to efficient and low-cost estimations of E%.
Keywords:Base liquid  Gaussian process regression  Heat transfer  Nanofluid  Nanoparticles  Thermal conductivity
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号