首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Spin-orbit interactions in semiconductor superlattice
Institution:Physics Department, Zhejiang Normal University, Zhejiang 321004, China
Abstract:The purpose of this paper is to theoretically investigate the spin-orbit interactions of common semiconductor superlattices. Spin splitting and spin-orbit interaction coefficients are calculated based on interactions between the interface-related-Rashba effect and Dresselhaus effect. Semiconductor superlattice shows a series of specific characteristics in spin splitting as follows. The spin splitting of the superlattice structure is greater than that of a single quantum well, contributing to significant spin polarization, spin filtering, and convenient manipulation of spintronic devices. The spin splitting of some superlattice structures does not change with variation of the size of some constituent quantum wells, reducing the requirements for accuracy in the size of quantum wells. The total spin splitting of lower sub-levels of some superlattice can be designed to be zero, realizing a persistent spin helix effect and long spin relaxation time, however, the total spin splitting of higher sub-levels is still appreciable, contributing to desirable spin polarization. These results demonstrate that one superlattice structure can realize two functions, acting as a spin field effect transistor and a spin filter.
Keywords:Rashba effect  Superlattice  Spin splitting  Quantum well
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号