首页 | 本学科首页   官方微博 | 高级检索  
     


A metal-organic framework with highly polar pore surfaces: selective CO2 adsorption and guest-dependent on/off emission properties
Authors:Kanoo Prakash  Ghosh Ashta Chandra  Cyriac Soumya T  Maji Tapas Kumar
Affiliation:Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore-560 064, India.
Abstract:A 3D porous Zn(II) metal-organic framework {[Zn(2)(H(2)dht)(dht)(0.5)(azpy)(0.5)(H(2)O)]·4H(2)O} (1; H(2)dht=dihydroxyterphthalate, azpy=4,4'-azobipyridine) has been synthesised by employing 2,5-dihydroxyterephthalic acid (H(4)dht), a multidentate ligand and 4,4'-azobipyridine by solvent-diffusion techniques at room temperature. The as-synthesised framework furnishes two different types of channels: one calyx-shaped along the [001] direction and another rectangle-shaped along the [101] direction occupied by guest water molecules. The dehydrated framework, {[Zn(2)(H(2)dht)(dht)(0.5)(azpy)(0.5)]} (1') provides 52.7% void volume to the total unit-cell volume. The pore surfaces of 1' are decorated with unsaturated Zn(II) sites and pendant hydroxyl groups of H(2)dht linker, thereby resulting in a highly polar pore surface. The dehydrated framework 1' shows highly selective adsorption of CO(2) over other gases, such as N(2), H(2), O(2) and Ar, at 195 K. Photoluminescence studies revealed that compound 1 exhibits green emission (λ(max)≈530 nm) on the basis of the excited-state intramolecular proton-transfer (ESIPT) process of the H(2)dht linker; no emission was observed in dehydrated solid 1'. Such guest-induced on/off emission has been correlated to the structural transformation and concomitant breaking and reforming of the OH···OCO hydrogen-bonding interaction in the H(2)dht linker in 1'/1.
Keywords:adsorption  host–guest systems  metal–organic frameworks  microporous materials  zinc
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号