首页 | 本学科首页   官方微博 | 高级检索  
     


Specific features of the modeling of boiling-fluid flows
Authors:O. E. Ivashnev
Abstract:Experiments show that in low-and high-velocity flows the boiling process is fundamentally different: in the former, the fluid boils on the walls, and in the latter in the volume. In high-velocity flows, the boiling intensity is orders of magnitude greater. In modeling fast and slow flows, the number of bubbles, which is a free parameter of the model and must be specified, differs by orders of magnitude. When high-speed flows of different kinds are modeled (vessel depressurization, nozzle flows) the number of bubbles specified also differs by orders of magnitude. In this study, we formulate the hypothesis that in both kinds of flows the process of boiling starts similarly, namely, on the walls. However, in high-speed flows the number of bubbles increases by orders of magnitude due to bubble fragmentation. As a result of intense fragmentation, the system “forgets” the initial number of bubbles and the process becomes volume boiling. This approach makes it possible to construct a universal model of boiling. To test this hypothesis, we constructed a mathematical model which takes into account the possibility of bubble fragmentation due to the instability developing under the action of centrifugal accelerations of the bubble surface. This model was used to calculate the process of depressurization of a high-pressure vessel. The calculations demonstrated that, for any initial number of bubbles, 1 ms after depressurization the bubble number attains the same level. Bubble fragmentation takes place in “self-sustained detonation waves”. The stationary structure of detonation waves in a boiling fluid is investigated. A scheme of the wave structure according to which the wave consists of a shock wave and a relaxation zone is proposed. Calculations of a boiling-fluid flow through a Laval nozzle reveal the periodic appearance of detonation waves. Accordingly, nozzle flows should be accompanied by significant oscillations of the parameters.
Keywords:boiling  non-equilibrium medium  fragmentation  wave  detonation
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号