首页 | 本学科首页   官方微博 | 高级检索  
     


Thermoelectric effects of a laterally coupled double-quantum-dot structure
Authors:C. Jiang  W. J. Gong  Y. S. Zheng
Affiliation:1. S N Bose National Centre for Basic Sciences, Block- JD, Sector- III, Salt Lake, 700098, Kolkata, India
Abstract:We investigate the thermoelectric properties of a laterally coupled double-quantum-dot structure. For this structure, a one-dimensional quantum dot (QD) chain between two leads forms a main channel for electron transmission, and each QD in the chain laterally couples to an additional QD. It is found that at low temperature, similar insulating bands emerge around the antiresonant points in the electronic and thermal conductance spectra. And, the edges of the insulating bands become steep rapidly with the increase of QD numbers. What’s interesting is that striking thermoelectric effect exists in the energy region where the insulating bands appear. Furthermore, with the formation of the insulation bands, the magnitude of the Seebeck coefficient becomes stable, whereas the thermoelectric efficiency is increased. By plotting the Lorentz number spectrum, we observe that in such a structure, the Lorentz number strongly violates the Wiedemann-Franz law in the insulating-band region with its maximum at the point of antiresonance. When weak intradot Coulomb interaction is taken into account, the weakened thermoelectric effect can still be improved with the increase of QD numbers.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号