首页 | 本学科首页   官方微博 | 高级检索  
     


Ordinal analysis of time series
Affiliation:1. Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 487-3, Santiago, Chile;2. Facultad de Ingeniería, Universidad de los Andes, Av. San Carlos de Apoquindo 2200, Santiago, Chile;3. Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II-2do. Piso, 1428 Buenos Aires, Argentina;1. School of Electrical and Computer Engineering, National Technical University of Athens, 15780 Athens, Greece;2. Department of Electrical Engineering, Stanford University, Stanford, CA 94304, United States;1. Instituto de Física Enrique Gaviola (IFEG), Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET), Av. Medina Allende s/n, X5000HUA, Córdoba, Argentina;2. Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba, Av. Medina Allende s/n, Ciudad Universitaria, X5000HUA, Córdoba, Argentina;3. Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET), Av. Rivadavia 1917, C1033AAJ, CABA, Argentina;1. Department of Neurology, Bern University Hospital, University of Bern, Bern, Switzerland;2. Department of Intensive Care Medicine, Bern University Hospital, University of Bern, Bern, Switzerland;1. Centro de Investigaciones Ópticas (CONICET La Plata – CIC), C.C. 3, 1897 Gonnet, Argentina;2. Departamento de Ciencias Básicas, Facultad de Ingeniería, Universidad Nacional de La Plata (UNLP), 1900 La Plata, Argentina;3. Instituto de Física, Pontificia Universidad Católica de Valparaíso (PUCV), 23-40025 Valparaíso, Chile;4. Research Office for Complex Physical and Biological Systems (ROCoS), Mutschellenstr. 179, 8038 Zurich, Switzerland;5. Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland;6. Instituto de Física, Universidade Federal de Alagoas (UFAL), BR 104 Norte km 97, 57072-970, Maceió, Alagoas, Brazil;7. Instituto Tecnológico de Buenos Aires (ITBA) and CONICET, C1106ACD, Av. Eduardo Madero 399, Ciudad Autónoma de Buenos Aires, Argentina;8. Complex Systems Group, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de los Andes, Av. Mons. Álvaro del Portillo 12.455, Las Condes, Santiago, Chile;1. Sleep-Wake-Epilepsy-Center, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland;2. Sleep and Epilepsy Center, Neurocenter of Southern Switzerland, Civic Hospital of Lugano, Lugano, Switzerland;3. Support Center for Advanced Neuroimaging (SCAN), University Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland;4. “C. Munari” Epilepsy Surgery Centre/Center of Sleep Medicine, Department of Neuroscience, Niguarda Hospital, Milan, Italy
Abstract:In order to develop fast and robust methods for extracting qualitative information from non-linear time series, Bandt and Pompe have proposed to consider time series from the pure ordinal viewpoint. On the basis of counting ordinal patterns, which describe the up-and-down in a time series, they have introduced the concept of permutation entropy for quantifying the complexity of a system behind a time series. The permutation entropy only provides one detail of the ordinal structure of a time series. Here we present a method for extracting the whole ordinal information.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号