首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Calorimetric unfolding of intramolecular triplexes: length dependence and incorporation of single AT --> TA substitutions in the duplex domain
Authors:Shikiya Ronald  Marky Luis A
Institution:Department of Pharmaceutical Sciences and Biochemistry and Molecular Biology, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, Nebraska 68198, USA.
Abstract:DNA triplexes have been the subject of great interest due to their ability to interfere with gene expression. The inhibition of gene expression involves the design of stable triplexes under physiological conditions; therefore, it is important to have a clear understanding of the energetic contributions controlling their stability. We have used a combination of UV spectroscopy and differential scanning calorimetric (DSC) techniques to investigate the unfolding of intramolecular triplexes, d(A(n)C5T(n)C5T(n)), where n is 5-7, 9, and 11, and related triplexes with a single AT --> TA substitution in their duplex stem. Specifically, we obtain standard thermodynamic profiles for the unfolding of each triplex in buffer solutions containing 0.1 M or 1 M NaCl. The triplexes unfold in monophasic or biphasic transitions (triplex --> duplex --> coil) depending on the concentration of salt used and position of the substitution, and their transition temperatures are independent of strand concentration. The DSC curves of the unsubstituted triplexes yielded an unfolding heat of 13.9 kcal/mol for a TAT/TAT base-triplet stack and a heat capacity of 505 cal/ degrees C.mol. The incorporation of a single substitution destabilizes triplex formation (association of the third strand) to a larger extent in 0.1 M NaCl, and the magnitude of the effects also depends on the position of the substitution. The combined results show that a single AT --> TA substitution in a homopurine/homopyrimidine duplex does not allow triplex formation of the neighboring five TAT base triplets, indicating that the in vivo formation of triplexes, such as H-DNA, is exclusive to homopurine/homopyrimidine sequences.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号