首页 | 本学科首页   官方微博 | 高级检索  
     


Size effect in the titanium/diamond‐like carbon bilayer films: effect of relative thickness on their structure and mechanical properties
Authors:B. Zhou  Z. Liu  A.V. Rogachev  D.G. Piliptsou  B. Tang
Affiliation:1. Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan, China;2. Department of Physics, Gomel State University, Gomel, Belarus
Abstract:Titanium/diamond‐like carbon (Ti/DLC) bilayer films with different relative thickness were fabricated by direct‐current and pulsed cathode arc plasma method. Microstructure, morphological characteristics, and mechanical properties of the films were investigated in dependence of the thickness of Ti and DLC layers by Raman spectroscopy, atomic force microscopy, Knoop sclerometer, and surface profilometer. Raman spectra of Ti/DLC bilayers show the microstructure evolution (the size and ordering degree of sp2‐hybridized carbon clusters) with varying the thicknesses of Ti interlayer and DLC layer. Nano‐scaled Ti interlayer of 12–20 nm thickness presents the largest size effect. The catalytic effect of the sublayer is most pronounced in the carbon layer of less than 106 nm. In these thickness ranges, the bilayer films possessed the highest micro‐hardness and reactivity between atoms at interface. Internal stress in the bilayer monotonically decreases, with the thickness of Ti interlayer increasing to 30 nm and then becomes stable with the thickness. These results are associated with the occurrence of atomic diffusion process at Ti/C interface, and they are of cardinal significance to optimize the structure and mechanical properties of carbon‐based multilayer films. Copyright © 2016 John Wiley & Sons, Ltd.
Keywords:diamond‐like carbon  size effect  bilayer  microstructure  mechanical property
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号