首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The association reaction between C2H and 1-butyne: a computational chemical kinetics study
Authors:Mandal Debasish  Mondal Bhaskar  Das Abhijit K
Institution:Department of Spectroscopy, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India.
Abstract:The potential energy surfaces (PES) for the reaction of the C(2)H radical with 1-butyne (C(4)H(6)) have been studied using the CBS-QB3 method. Density functional B3LYP/cc-pVTZ and M06-2X/6-311++G(d,p) calculations have also been performed to analyze the reaction energetics. For detailed theoretical calculation on the total reaction mechanism, the initial association reactions on more and less substituted C atoms of 1-butyne are treated separately followed by a variational transition state theory (VTST) calculation to obtain reaction rates. The successive unimolecular reactions from the association reaction complexes are subjected to Rice-Ramsperger-Kassel-Marcus (RRKM) calculations for reaction rate constants and product branching ratios. The calculated rate constants in the temperature range 70-295 K for both the association reactions are found to be highly temperature dependent at low temperatures, which is contrary to the experimental findings of temperature independent association rates. We have explained this observation with the help of variational nature of the transition states, and we found a "loose" transition state at low temperatures. The calculated product branching ratios for the unimolecular reactions generally agree with the available experimental data, although some channels show a significant method dependency and therefore the correlation with experiment is lost to some extent. Our detailed reaction energetics calculations confirm that the C(2)H + C(4)H(6) reaction proceeds without an entrance barrier and leads to the important products ethynylallene + CH(3), 1,3-hexadiyne + H, 3,4-hexadiene-1-yne + H, 2-ethynyl-1,3-butadiene + H, 3,4-dimethylenecyclobut-1-ene + H and fulvene + H exothermic by 25-75 kcal mol(-1), with strong dependence of the product distribution on the association mode of C(2)H with C(4)H(6), making these reactions fast under low temperature conditions of Titan's atmosphere. Therefore this study can provide a detailed picture of the complex hydrocarbon formation mechanism in the upper atmosphere.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号