首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Bulky monodentate phosphoramidites in palladium-catalyzed allylic alkylation reactions: aspects of regioselectivity and enantioselectivity
Authors:Boele Maarten D K  Kamer Paul C J  Lutz Martin  Spek Anthony L  de Vries Johannes G  van Leeuwen Piet W N M  van Strijdonck Gino P F
Institution:University of Amsterdam, van't Hoff Institute for Molecular Sciences, Nieuwe Achtergracht 166, 1018 WV Amsterdam, Netherlands.
Abstract:A series of bulky monodentate phosphoramidite ligands, based on biphenol, BINOL and TADDOL backbones, have been employed in the Pd-catalysed allylic alkylation reaction. Reaction of disodium diethyl 2-methyl malonate with monosubstituted allylic substrates in the presence of palladium complexes of the phosphoramidite ligands proceeds smoothly at room temperature. The regioselectivities observed depend strongly on the leaving group and the geometry of the allylic starting compounds. Mono-coordination occurs when these ligands are ligated in Pd(allyl)(X)] complexes (allyl=C3H5, 1-CH3C3H4, 1-C6H5C3H4, 1,3-(C6H5)2C3H3; X=Cl, OAc). The solid-state structure determined by X-ray diffraction of Pd(C3H5)(1)(Cl)] reveals a non-symmetric coordination of the allyl moiety, caused by the stronger trans influence of the phosphoramidite ligand relative to X-. In all of these complexes, the syn,trans isomer is the major species present in solution. Because of fast isomerisation and high reactivity of the syn,cis complex, the major product formed upon alkylation is the linear product, especially for monosubstituted phenylallyl substrates in the presence of halide counterions. In the case of biphenol- and BINOL-based phosphoramidites, however, a strong memory effect is observed when 1-phenyl-2-propenyl acetate is employed as the substrate. In this case, nucleophilic attack competes effectively with the isomerisation of the transient cinnamylpalladium complexes. The asymmetric allylic alkylation of 1,3-diphenyl-2-propenyl acetate afforded the chiral product in up to 93 % ee. Substrates with smaller substituents gave lower enantioselectivities. The observed stereoselectivity is explained in terms of a preferential rotation mechanism, in which the product is formed by attack on one of the isomers of the intermediate Pd1,3-(C6H5)2C3H3](L)(OAc)] complex.
Keywords:alkylation  asymmetric catalysis  homogeneous catalysis  ligand design  palladium
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号