首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Selective extraction of sulfonamides from food by use of silica-coated molecularly imprinted polymer nanospheres
Authors:Ruixia Gao  Junjie Zhang  Xiwen He  Langxing Chen  Yukui Zhang
Institution:(1) Department of Chemistry, Nankai University, Tianjin, 300071, China;(2) The State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin, 300071, China;(3) Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116011, China;
Abstract:We report the use of nanospheres prepared by coating silica with molecularly imprinted polymer (MIP) for sulfamethoxazole (SMO). The resulting SiO2–SMO–MIP nanoparticles have highly improved imprinting and adsorption capacity, and can be used for separation and determination of sulfonamides in eggs and milk. In the synthesis, monodispersed SiO2 nanoparticles (Si–NP) of diameter 80 nm were amino-modified by reaction with 3-aminopropyltriethoxylsilane. The acryloyl monolayer was then grafted onto the amine-modified Si–NP. Finally, the MIP films were coated on to the surface of Si–NP by the copolymerization of the vinyl end groups with functional monomer (acrylamide), cross-linking agent (ethylene glycol dimethacrylate), initiator (azo-bis-isobutyronitrile), and template molecule (sulfamethoxazole). The resulting SiO2–SMO–MIP–NP were characterized by transmission electron microscopy, scanning electron microscopy, and Fourier transform infrared spectrometry. The adsorption properties were demonstrated by equilibrium rebinding experiments and Scatchard analysis. The results showed that the binding sites of the SiO2–SMO–MIP were highly accessible, and the maximum adsorption capacity of the SiO2–SMO–MIP for SMO was 20.21 mg g−1. The selectivity of the SiO2–SMO–MIP–NP obtained was elucidated by using SMO and structurally related sulfonamides. The results indicated that the SiO2–SMO–MIP had significant selectivity for SMO. The feasibility of removing SMO and sulfadiazine (SDZ) from food samples was proved by use of spiked milk and eggs. A method for the separation and determination of trace SMO and SDZ in milk and egg samples was developed, with recoveries ranging from 69.8% to 89.1%.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号